A pressure-based solver for low-Mach number flow using a discontinuous Galerkin method

نویسندگان

چکیده

Abstract Over the past two decades, there has been much development in discontinuous Galerkin methods for incompressible flows and compressible with a positive Mach number, but almost no attention paid to variable-density at low speeds. This paper presents pressure-based method flow low-Mach number limit. We use pressure correction method, which is simplified by solving mass flux instead of velocity. The fluid properties do not depend significantly on pressure, may vary strongly space time as function temperature. pay particular temporal discretization enthalpy equation, show that specific needs be ‘offset’ constant order finite difference stable. also how one can solve from conservative transport equation without needing predictor step density. These findings spatial discretization. A series manufactured solutions variable demonstrate full second-order accuracy, iterating equations within step. simulate Von Karman vortex street wake heated circular cylinder, good agreement between our numerical results experimental data.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A discontinuous Galerkin method for inviscid low Mach number flows

10 In this work we extend the high-order Discontinuous Galerkin (DG) Finite element 11 method to inviscid low Mach number flows. The method here presented is designed 12 to improve the accuracy and efficiency of the solution at low Mach numbers using 13 both explicit and implicit schemes for the temporal discretization of the compress14 ible Euler equations. The algorithm is based on a classica...

متن کامل

Dns of Flow in a Low-pressure Turbine Cascade Using a Discontinuous-galerkin Spectral-element Method

A new computational capability under development for accurate and efficient high-fidelity direct numerical simulation (DNS) and large eddy simulation (LES) of turbomachinery is described. This capability is based on an entropy-stable Discontinuous-Galerkin spectral-element approach that extends to arbitrarily high orders of spatial and temporal accuracy and is implemented in a computationally e...

متن کامل

A low Mach number solver: Enhancing applicability

In astrophysics and meteorology there exist numerous situations where flows exhibit small velocities compared to the sound speed. To overcome the stringent timestep restrictions posed by the predominantly used explicit methods for integration in time the Euler (or Navier–Stokes) equations are usually replaced by modified versions. In astrophysics this is nearly exclusively the anelastic approxi...

متن کامل

A Discontinuous Galerkin Solver for Front Propagation

We propose a new discontinuous Galerkin method based on [Y. Cheng and C.-W. Shu, J. Comput. Phys., 223 (2007), pp. 398–415] to solve a class of Hamilton–Jacobi equations that arises from optimal control problems. These equations are connected to front propagation problems or minimal time problems with nonisotropic dynamics. Several numerical experiments show the relevance of our method, in part...

متن کامل

A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media

In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2021

ISSN: ['1090-2716', '0021-9991']

DOI: https://doi.org/10.1016/j.jcp.2020.109877